Prediction of protein interdomain linker regions by a hidden Markov model
نویسندگان
چکیده
MOTIVATION Our aim was to predict protein interdomain linker regions using sequence alone, without requiring known homology. Identifying linker regions will delineate domain boundaries, and can be used to computationally dissect proteins into domains prior to clustering them into families. We developed a hidden Markov model of linker/non-linker sequence regions using a linker index derived from amino acid propensity. We employed an efficient Bayesian estimation of the model using Markov Chain Monte Carlo, Gibbs sampling in particular, to simulate parameters from the posteriors. Our model recognizes sequence data to be continuous rather than categorical, and generates a probabilistic output. RESULTS We applied our method to a dataset of protein sequences in which domains and interdomain linkers had been delineated using the Pfam-A database. The prediction results are superior to a simpler method that also uses linker index.
منابع مشابه
A generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences
The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...
متن کاملComparing the Bidirectional Baum-Welch Algorithm and the Baum-Welch Algorithm on Regular Lattice
A profile hidden Markov model (PHMM) is widely used in assigning protein sequences to protein families. In this model, the hidden states only depend on the previous hidden state and observations are independent given hidden states. In other words, in the PHMM, only the information of the left side of a hidden state is considered. However, it makes sense that considering the information of the b...
متن کاملGene Recognition in Cyanobacterium Genomic Sequence Data Using the Hidden Markov Model
We have developed a hidden Markov model (HMM) to detect the protein coding regions within one megabase contiguous sequence data, registered in a database called GenBank in eight entries, of the genome of cyanobacterium, Synechocystis sp. strain PCC6803. Detection of the coding regions in the database entry was performed by using HMM whose parameters were determined by taking the statistics from...
متن کاملاستفاده از مدل مارکوف پنهان در پیشبینی موارد جدید سل در استان همدان بر اساس اطلاعات موارد ثبت شده طی سالهای 94-1384
Background and Objectives: Tuberculosis is a chronic bacterial disease and a major cause of morbidity and mortality. It is caused by a Mycobacterium tuberculosis. Awareness of the incidence and number of new cases of the disease is valuable information for revising the implemented programs and development indicators. time series and regression are commonly used models for prediction but these m...
متن کاملPredicting CpG Islands and Their Relationship with Genomic Feature in Cattle by Hidden Markov Model Algorithm
Cattle supply an important source of nutrition for humans in the world. CpG islands (CGIs) are very important and useful, as they carry functionally relevant epigenetic loci for whole genome studies. As a matter of fact, there have been no formal analyses of CGIs at the DNA sequence level in cattle genomes and therefore this study was carried out to fill the gap. We used hidden markov model alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 21 10 شماره
صفحات -
تاریخ انتشار 2005